FAT Filesystem Support
ESP-IDF uses the FatFs library to work with FAT filesystems. FatFs resides in the fatfs
component. Although the library can be used directly, many of its features can be accessed via VFS using the C standard library and POSIX API functions.
Additionally, FatFs has been modified to support the runtime pluggable disk I/O layer. This allows mapping of FatFs drives to physical disks at runtime.
Using FatFs with VFS
The header file fatfs/vfs/esp_vfs_fat.h defines the functions for connecting FatFs and VFS.
The function esp_vfs_fat_register()
allocates a FATFS
structure and registers a given path prefix in VFS. Subsequent operations on files starting with this prefix are forwarded to FatFs APIs.
The function esp_vfs_fat_unregister_path()
deletes the registration with VFS, and frees the FATFS
structure.
Most applications use the following workflow when working with esp_vfs_fat_
functions:
Call
esp_vfs_fat_register()
to specify:Path prefix where to mount the filesystem (e.g.,
"/sdcard"
,"/spiflash"
)FatFs drive number
A variable which receives the pointer to the
FATFS
structure
Call
ff_diskio_register()
to register the disk I/O driver for the drive number used in Step 1.Call the FatFs function
f_mount()
, and optionallyf_fdisk()
,f_mkfs()
, to mount the filesystem using the same drive number which was passed toesp_vfs_fat_register()
. For more information, see FatFs documentation.Call the C standard library and POSIX API functions to perform such actions on files as open, read, write, erase, copy, etc. Use paths starting with the path prefix passed to
esp_vfs_register()
(for example,"/sdcard/hello.txt"
). The filesystem uses 8.3 filenames format (SFN) by default. If you need to use long filenames (LFN), enable the CONFIG_FATFS_LONG_FILENAMES option. More details on the FatFs filenames are available here.Optionally, by enabling the option CONFIG_FATFS_USE_FASTSEEK, you can use the POSIX lseek function to perform it faster. The fast seek does not work for files in write mode, so to take advantage of fast seek, you should open (or close and then reopen) the file in read-only mode.
Optionally, by enabling the option CONFIG_FATFS_IMMEDIATE_FSYNC, you can enable automatic calling of
f_sync()
to flush recent file changes after each call ofvfs_fat_write()
,vfs_fat_pwrite()
,vfs_fat_link()
,vfs_fat_truncate()
andvfs_fat_ftruncate()
functions. This feature improves file-consistency and size reporting accuracy for the FatFs, at a price on decreased performance due to frequent disk operations.Optionally, call the FatFs library functions directly. In this case, use paths without a VFS prefix, for example,
"/hello.txt"
.Close all open files.
Call the FatFs function
f_mount()
for the same drive number with NULLFATFS*
argument to unmount the filesystem.Call the FatFs function
ff_diskio_register()
with NULLff_diskio_impl_t*
argument and the same drive number to unregister the disk I/O driver.Call
esp_vfs_fat_unregister_path()
with the path where the file system is mounted to remove FatFs from VFS, and free theFATFS
structure allocated in Step 1.
The convenience functions esp_vfs_fat_sdmmc_mount()
, esp_vfs_fat_sdspi_mount()
, and esp_vfs_fat_sdcard_unmount()
wrap the steps described above and also handle SD card initialization. These functions are described in the next section.
Using FatFs with VFS and SD Cards
The header file fatfs/vfs/esp_vfs_fat.h defines convenience functions esp_vfs_fat_sdmmc_mount()
, esp_vfs_fat_sdspi_mount()
, and esp_vfs_fat_sdcard_unmount()
. These functions perform Steps 1–3 and 7–9 respectively and handle SD card initialization, but provide only limited error handling. Developers are encouraged to check its source code and incorporate more advanced features into production applications.
The convenience function esp_vfs_fat_sdmmc_unmount()
unmounts the filesystem and releases the resources acquired by esp_vfs_fat_sdmmc_mount()
.
Using FatFs with VFS in Read-Only Mode
The header file fatfs/vfs/esp_vfs_fat.h also defines the convenience functions esp_vfs_fat_spiflash_mount_ro()
and esp_vfs_fat_spiflash_unmount_ro()
. These functions perform Steps 1-3 and 7-9 respectively for read-only FAT partitions. These are particularly helpful for data partitions written only once during factory provisioning, which will not be changed by production application throughout the lifetime of the hardware.
FatFS Disk IO Layer
FatFs has been extended with API functions that register the disk I/O driver at runtime.
These APIs provide implementation of disk I/O functions for SD/MMC cards and can be registered for the given FatFs drive number using the function ff_diskio_register_sdmmc()
.
void ff_diskio_register(BYTE pdrv, const ff_diskio_impl_t *discio_impl)
Register or unregister diskio driver for given drive number.
When FATFS library calls one of disk_xxx functions for driver number pdrv, corresponding function in discio_impl for given pdrv will be called.
Parameters
pdrv -- drive number
discio_impl -- pointer to ff_diskio_impl_t structure with diskio functions or NULL to unregister and free previously registered drive
struct ff_diskio_impl_t
Structure of pointers to disk IO driver functions.
See FatFs documentation for details about these functions
Public Members
DSTATUS (*init)(unsigned char pdrv)
disk initialization function
DSTATUS (*status)(unsigned char pdrv)
disk status check function
DRESULT (*read)(unsigned char pdrv, unsigned char *buff, uint32_t sector, unsigned count)
sector read function
DRESULT (*write)(unsigned char pdrv, const unsigned char *buff, uint32_t sector, unsigned count)
sector write function
DRESULT (*ioctl)(unsigned char pdrv, unsigned char cmd, void *buff)
function to get info about disk and do some misc operations
void ff_diskio_register_sdmmc(unsigned char pdrv, sdmmc_card_t *card)
Register SD/MMC diskio driver
Parameters
pdrv -- drive number
card -- pointer to sdmmc_card_t structure describing a card; card should be initialized before calling f_mount.
esp_err_t ff_diskio_register_wl_partition(unsigned char pdrv, wl_handle_t flash_handle)
Register spi flash partition
Parameters
pdrv -- drive number
flash_handle -- handle of the wear levelling partition.
esp_err_t ff_diskio_register_raw_partition(unsigned char pdrv, const esp_partition_t *part_handle)
Register spi flash partition
Parameters
pdrv -- drive number
part_handle -- pointer to raw flash partition.
FatFs Partition Generator
We provide a partition generator for FatFs (wl_fatfsgen.py ) which is integrated into the build system and could be easily used in the user project.
The tool is used to create filesystem images on a host and populate it with content of the specified host folder.
The script is based on the partition generator (fatfsgen.py ). Apart from generating partition, it can also initialize wear levelling.
The latest version supports both short and long file names, FAT12 and FAT16. The long file names are limited to 255 characters and can contain multiple periods (.
) characters within the filename and additional characters +
, ,
, ;
, =
, [
and ]
.
An in-depth description of the FatFs partition generator and analyzer can be found at Generating and parsing FAT partition on host.
Build System Integration with FatFs Partition Generator
It is possible to invoke FatFs generator directly from the CMake build system by calling fatfs_create_spiflash_image
:
fatfs_create_spiflash_image(`\<partition\> \<base_dir\> [FLASH_IN_PROJECT]`)
If you prefer generating partition without wear levelling support, you can use fatfs_create_rawflash_image
:
fatfs_create_rawflash_image(`\<partition\> \<base_dir\> [FLASH_IN_PROJECT]`)
fatfs_create_spiflash_image
respectively fatfs_create_rawflash_image
must be called from project's CMakeLists.txt.
If you decide for any reason to use fatfs_create_rawflash_image
(without wear levelling support), beware that it supports mounting only in read-only mode in the device.
The arguments of the function are as follows:
partition - the name of the partition as defined in the partition table (e.g., storage/fatfsgen/partitions_example.csv).
base_dir - the directory that will be encoded to FatFs partition and optionally flashed into the device. Beware that you have to specify the suitable size of the partition in the partition table.
flag
FLASH_IN_PROJECT
- optionally, users can have the image automatically flashed together with the app binaries, partition tables, etc. onidf.py flash -p <PORT>
by specifyingFLASH_IN_PROJECT
.flag
PRESERVE_TIME
- optionally, users can force preserving the timestamps from the source folder to the target image. Without preserving the time, every timestamp will be set to the FATFS default initial time (1st January 1980).
For example:
fatfs_create_spiflash_image(my_fatfs_partition my_folder FLASH_IN_PROJECT)
If FLASH_IN_PROJECT is not specified, the image will still be generated, but you will have to flash it manually using esptool.py
or a custom build system target.
For an example, see storage/fatfsgen.
FatFs Partition Analyzer
(fatfsparse.py ) is a partition analyzing tool for FatFs.
It is a reverse tool of (fatfsgen.py ), i.e., it can generate the folder structure on the host based on the FatFs image.
Usage:
./fatfsparse.py [-h] [--wl-layer {detect,enabled,disabled}] fatfs_image.img
High-level API Reference
Header File
This header file can be included with:
#include "esp_vfs_fat.h"
- This header file is a part of the API provided by the
fatfs
component. To declare that your component depends onfatfs
, add the following to your CMakeLists.txt:
REQUIRES fatfs
or
> PRIV_REQUIRES fatfs
Functions
esp_err_t esp_vfs_fat_register(const char *base_path, const char *fat_drive, size_t max_files, FATFS **out_fs)
Register FATFS with VFS component.
This function registers given FAT drive in VFS, at the specified base path. If only one drive is used, fat_drive argument can be an empty string. Refer to FATFS library documentation on how to specify FAT drive. This function also allocates FATFS structure which should be used for f_mount call.
Note
This function doesn't mount the drive into FATFS, it just connects POSIX and C standard library IO function with FATFS. You need to mount desired drive into FATFS separately.
Parameters
base_path -- path prefix where FATFS should be registered
fat_drive -- FATFS drive specification; if only one drive is used, can be an empty string
max_files -- maximum number of files which can be open at the same time
out_fs -- [out] pointer to FATFS structure which can be used for FATFS f_mount call is returned via this argument.
Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if esp_vfs_fat_register was already called
ESP_ERR_NO_MEM if not enough memory or too many VFSes already registered
esp_err_t esp_vfs_fat_unregister_path(const char *base_path)
Un-register FATFS from VFS.
Note
FATFS structure returned by esp_vfs_fat_register is destroyed after this call. Make sure to call f_mount function to unmount it before calling esp_vfs_fat_unregister_ctx. Difference between this function and the one above is that this one will release the correct drive, while the one above will release the last registered one
Parameters
base_path -- path prefix where FATFS is registered. This is the same used when esp_vfs_fat_register was called
Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if FATFS is not registered in VFS
esp_err_t esp_vfs_fat_sdmmc_mount(const char *base_path, const sdmmc_host_t *host_config, const void *slot_config, const esp_vfs_fat_mount_config_t *mount_config, sdmmc_card_t **out_card)
Convenience function to get FAT filesystem on SD card registered in VFS.
This is an all-in-one function which does the following:
initializes SDMMC driver or SPI driver with configuration in host_config
initializes SD card with configuration in slot_config
mounts FAT partition on SD card using FATFS library, with configuration in mount_config
registers FATFS library with VFS, with prefix given by base_prefix variable
This function is intended to make example code more compact. For real world applications, developers should implement the logic of probing SD card, locating and mounting partition, and registering FATFS in VFS, with proper error checking and handling of exceptional conditions.
Note
Use this API to mount a card through SDSPI is deprecated. Please call esp_vfs_fat_sdspi_mount()
instead for that case.
Parameters
base_path -- path where partition should be registered (e.g. "/sdcard")
host_config -- Pointer to structure describing SDMMC host. When using SDMMC peripheral, this structure can be initialized using SDMMC_HOST_DEFAULT() macro. When using SPI peripheral, this structure can be initialized using SDSPI_HOST_DEFAULT() macro.
slot_config -- Pointer to structure with slot configuration. For SDMMC peripheral, pass a pointer to sdmmc_slot_config_t structure initialized using SDMMC_SLOT_CONFIG_DEFAULT.
mount_config -- pointer to structure with extra parameters for mounting FATFS
out_card -- [out] if not NULL, pointer to the card information structure will be returned via this argument
Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount was already called
ESP_ERR_NO_MEM if memory can not be allocated
ESP_FAIL if partition can not be mounted
other error codes from SDMMC or SPI drivers, SDMMC protocol, or FATFS drivers
esp_err_t esp_vfs_fat_sdspi_mount(const char *base_path, const sdmmc_host_t *host_config_input, const sdspi_device_config_t *slot_config, const esp_vfs_fat_mount_config_t *mount_config, sdmmc_card_t **out_card)
Convenience function to get FAT filesystem on SD card registered in VFS.
This is an all-in-one function which does the following:
initializes an SPI Master device based on the SPI Master driver with configuration in slot_config, and attach it to an initialized SPI bus.
initializes SD card with configuration in host_config_input
mounts FAT partition on SD card using FATFS library, with configuration in mount_config
registers FATFS library with VFS, with prefix given by base_prefix variable
This function is intended to make example code more compact. For real world applications, developers should implement the logic of probing SD card, locating and mounting partition, and registering FATFS in VFS, with proper error checking and handling of exceptional conditions.
Note
This function try to attach the new SD SPI device to the bus specified in host_config. Make sure the SPI bus specified in host_config->slot
have been initialized by spi_bus_initialize()
before.
Parameters
base_path -- path where partition should be registered (e.g. "/sdcard")
host_config_input -- Pointer to structure describing SDMMC host. This structure can be initialized using SDSPI_HOST_DEFAULT() macro.
slot_config -- Pointer to structure with slot configuration. For SPI peripheral, pass a pointer to sdspi_device_config_t structure initialized using SDSPI_DEVICE_CONFIG_DEFAULT().
mount_config -- pointer to structure with extra parameters for mounting FATFS
out_card -- [out] If not NULL, pointer to the card information structure will be returned via this argument. It is suggested to hold this handle and use it to unmount the card later if needed. Otherwise it's not suggested to use more than one card at the same time and unmount one of them in your application.
Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount was already called
ESP_ERR_NO_MEM if memory can not be allocated
ESP_FAIL if partition can not be mounted
other error codes from SDMMC or SPI drivers, SDMMC protocol, or FATFS drivers
esp_err_t esp_vfs_fat_sdmmc_unmount(void)
Unmount FAT filesystem and release resources acquired using esp_vfs_fat_sdmmc_mount.
Deprecated:
Use esp_vfs_fat_sdcard_unmount()
instead.
Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount hasn't been called
esp_err_t esp_vfs_fat_sdcard_unmount(const char *base_path, sdmmc_card_t *card)
Unmount an SD card from the FAT filesystem and release resources acquired using esp_vfs_fat_sdmmc_mount()
or esp_vfs_fat_sdspi_mount()
Returns
ESP_OK on success
ESP_ERR_INVALID_ARG if the card argument is unregistered
ESP_ERR_INVALID_STATE if esp_vfs_fat_sdmmc_mount hasn't been called
esp_err_t esp_vfs_fat_sdcard_format(const char *base_path, sdmmc_card_t *card)
Format FAT filesystem.
Note
This API should be only called when the FAT is already mounted.
Parameters
base_path -- Path where partition should be registered (e.g. "/sdcard")
card -- Pointer to the card handle, which should be initialised by calling
esp_vfs_fat_sdspi_mount
first
Returns
ESP_OK
ESP_ERR_INVALID_STATE: FAT partition isn't mounted, call esp_vfs_fat_sdmmc_mount or esp_vfs_fat_sdspi_mount first
ESP_ERR_NO_MEM: if memory can not be allocated
ESP_FAIL: fail to format it, or fail to mount back
esp_err_t esp_vfs_fat_spiflash_mount_rw_wl(const char *base_path, const char *partition_label, const esp_vfs_fat_mount_config_t *mount_config, wl_handle_t *wl_handle)
Convenience function to initialize FAT filesystem in SPI flash and register it in VFS.
This is an all-in-one function which does the following:
finds the partition with defined partition_label. Partition label should be configured in the partition table.
initializes flash wear levelling library on top of the given partition
mounts FAT partition using FATFS library on top of flash wear levelling library
registers FATFS library with VFS, with prefix given by base_prefix variable
This function is intended to make example code more compact.
Parameters
base_path -- path where FATFS partition should be mounted (e.g. "/spiflash")
partition_label -- label of the partition which should be used
mount_config -- pointer to structure with extra parameters for mounting FATFS
wl_handle -- [out] wear levelling driver handle
Returns
ESP_OK on success
ESP_ERR_NOT_FOUND if the partition table does not contain FATFS partition with given label
ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount_rw_wl was already called
ESP_ERR_NO_MEM if memory can not be allocated
ESP_FAIL if partition can not be mounted
other error codes from wear levelling library, SPI flash driver, or FATFS drivers
esp_err_t esp_vfs_fat_spiflash_unmount_rw_wl(const char *base_path, wl_handle_t wl_handle)
Unmount FAT filesystem and release resources acquired using esp_vfs_fat_spiflash_mount_rw_wl.
Parameters
base_path -- path where partition should be registered (e.g. "/spiflash")
wl_handle -- wear levelling driver handle returned by esp_vfs_fat_spiflash_mount_rw_wl
Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount_rw_wl hasn't been called
esp_err_t esp_vfs_fat_spiflash_format_rw_wl(const char *base_path, const char *partition_label)
Format FAT filesystem.
Note
This API can be called when the FAT is mounted / not mounted. If this API is called when the FAT isn't mounted (by calling esp_vfs_fat_spiflash_mount_rw_wl), this API will first mount the FAT then format it, then restore back to the original state.
Parameters
base_path -- Path where partition should be registered (e.g. "/spiflash")
partition_label -- Label of the partition which should be used
Returns
ESP_OK
ESP_ERR_NO_MEM: if memory can not be allocated
Other errors from esp_vfs_fat_spiflash_mount_rw_wl
esp_err_t esp_vfs_fat_spiflash_mount_ro(const char *base_path, const char *partition_label, const esp_vfs_fat_mount_config_t *mount_config)
Convenience function to initialize read-only FAT filesystem and register it in VFS.
This is an all-in-one function which does the following:
finds the partition with defined partition_label. Partition label should be configured in the partition table.
mounts FAT partition using FATFS library
registers FATFS library with VFS, with prefix given by base_prefix variable
Note
Wear levelling is not used when FAT is mounted in read-only mode using this function.
Parameters
base_path -- path where FATFS partition should be mounted (e.g. "/spiflash")
partition_label -- label of the partition which should be used
mount_config -- pointer to structure with extra parameters for mounting FATFS
Returns
ESP_OK on success
ESP_ERR_NOT_FOUND if the partition table does not contain FATFS partition with given label
ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount_ro was already called for the same partition
ESP_ERR_NO_MEM if memory can not be allocated
ESP_FAIL if partition can not be mounted
other error codes from SPI flash driver, or FATFS drivers
esp_err_t esp_vfs_fat_spiflash_unmount_ro(const char *base_path, const char *partition_label)
Unmount FAT filesystem and release resources acquired using esp_vfs_fat_spiflash_mount_ro.
Parameters
base_path -- path where partition should be registered (e.g. "/spiflash")
partition_label -- label of partition to be unmounted
Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if esp_vfs_fat_spiflash_mount_ro hasn't been called
esp_err_t esp_vfs_fat_info(const char *base_path, uint64_t *out_total_bytes, uint64_t *out_free_bytes)
Get information for FATFS partition.
Parameters
base_path -- Base path of the partition examined (e.g. "/spiflash")
out_total_bytes -- [out] Size of the file system
out_free_bytes -- [out] Free bytes available in the file system
Returns
ESP_OK on success
ESP_ERR_INVALID_STATE if partition not found
ESP_FAIL if another FRESULT error (saved in errno)
Structures
struct esp_vfs_fat_mount_config_t
Configuration arguments for esp_vfs_fat_sdmmc_mount and esp_vfs_fat_spiflash_mount_rw_wl functions.
Public Members
bool format_if_mount_failed
If FAT partition can not be mounted, and this parameter is true, create partition table and format the filesystem.
int max_files
Max number of open files.
size_t allocation_unit_size
If format_if_mount_failed is set, and mount fails, format the card with given allocation unit size. Must be a power of 2, between sector size and 128 * sector size. For SD cards, sector size is always 512 bytes. For wear_levelling, sector size is determined by CONFIG_WL_SECTOR_SIZE option.
Using larger allocation unit size will result in higher read/write performance and higher overhead when storing small files.
Setting this field to 0 will result in allocation unit set to the sector size.
bool disk_status_check_enable
Enables real ff_disk_status function implementation for SD cards (ff_sdmmc_status). Possibly slows down IO performance.
Try to enable if you need to handle situations when SD cards are not unmounted properly before physical removal or you are experiencing issues with SD cards.
Doesn't do anything for other memory storage media.
Type Definitions
typedef esp_vfs_fat_mount_config_t esp_vfs_fat_sdmmc_mount_config_t